Page 1

Describing and Using Object Frameworks

Hafedh Mili and Houari Sahraoui*

Département d’informatique, Université du Québec a Montréal
Case Postale 8888, Station Centre-Ville, Montréal (Québec) H2T 2T3
*Centre de Recherche Informatique de Montréal
1801 McGill College, Montréal (Québec) H3A 2M4
{mili,sahraoui}@larc.info.uqgam.ca

Abstract

It has long been recognized that objects are too small units of reuse to provide any
real leverage [Deutsch,1989]. When a set of objects are often used together to
accomplish a frequently needed task, it is worthwhile packaging them as a unit;
this is what we call object frameworks. Object frameworks are hard to design, to
describe, to tailor, and to use. We set out to develop a representation of frameworks
that satisfies the following, goals, (i) a description of inter-object behavior that
supports both formal verification and understanding, (ii) abstraction and general-
ization, (iii) language-independence, (iv) an easy extraction of the descriptions
from actual code, and more importantly, (v) support for reuse related tasks such as
searchability, description of usage, incremental extension, and «operationaliza-
tiony/realization. We propose a model that attempts to address these often conflict-
ing goals, and that builds on existing work on both formal (e.g. [Goguen, 1986],
[Mili, 1989], [Helm, 1990], [Mili, 1996]) and informal (see e.g. [Johnson,1992])
inter-object behavioral description techniques. Our model supports abstraction
through a set of closure operations that allow us to treat framework descriptions
as regular class interfaces, supporting the embedding of frameworks. We define a
packaging operation on frameworks that packages a specific instantiation of a
framework into a concrete class definition, which may be used as a concrete par-
ticipant in yet more aggregate frameworks, and which supports various optimiza-
tions. We describe an ongoing prototype framework definition and manipulation
tool set that supports C++ frameworks, which we integrated into a toolkit for
searching and browsing reusable components. We conclude by discussing future
developments for the prototype and directions for future research.

1. Introduction

Reusability is often cited as the major contribution of object-orientation to the engineering of soft-
ware. Since the late 80’s, it became clear that classes are too small units of reuse to realize the pro-
jected or promised benefits [Deutsch, 1989]. This is due to two related factors. First, most classes
tend to be rather small in size, and second, classes seldom perform useful behavior by themselves;
they often contribute to a given function by interacting with other objects [Mili et al., 1990]. This
led researchers and practitioners alike to look into principles for designing and reusing collections
of reusable interacting classes that, together, perform some useful functions (see e.g. [Johnson &
Foote, 1988],[Deutsch, 1989]). We refer to such collections of objects as object frameworks.
Object frameworks can be of two kinds, domain-specific frameworks, with consist of a set of
classes from a specific application (business) domain, and design frameworks which consist of

Page 2

classes that implement a given mechanism or a computer-related task. We are interested in both
kinds of frameworks, and in this paper, we propose a representation and search model that should
accommodate both, and describe a preliminary Smalltalk prototype.

Developing and reusing object frameworks poses many challenges. From a development point of
view, there are two competing goals. Before we invest into implementing a framework, we have
to make sure that the design or domain it embodies is general enough that it will often be useful.
At the same time, it must be precise enough to be programmable and to have a reasonable per-
formance. This relies on a number of parameterization techniques that enable us to develop as
much of framework’s generic functionality as possible, leaving only application- or usage-spe-
cific behavior to be developed. Such techniques include general object-oriented abstraction tech-
niques such as abstract classes, which play the role of place holders to be replaced by actual
application classes, or generic classes which may be parameterized by such classes, or framework
specific techniques such as interface bridges (e.g. the so-called pluggable adaptors in Smalltalk’s
MVC), or the broadcast-based management of inter-object communication (e.g. Smalltalk’s
dependents mechanism). From a reuse viewpoint, there are two challenges. First, we have to find
a way of documenting frameworks succinctly, unambiguously, understandably, and in a way that
can be matched against developers’ needs and that can allow them to use it. These are conflicting
needs and neither formal specifications (see e.g. [Helm et al., 1990], [Hall & Weedon, 1993]) nor
the so-called pattern languages (see e.g. [Johnson, 1994],[Johnson, 1994],[Gabriel,1994]) address
all of them. Second, there is the problem of searching for relevant frameworks in the first place,
and once one is found, searching for classes that support a given interface, or ascertaining that a
given class does. In this paper, we propose a model for describing object frameworks that
attempts to address these issues.

In section 2, we provide a more thorough discussion of the challenges described earlier in the
form of a set of requirements that our model must satisfy. In section 3, we illustrate the model
through a simple example involving two C++ frameworks dealing with event-based simulation
systems, and describe a preliminary Smalltalk implementation. In section 4, we discuss related
work. We conclude in section 5.

2. Requirements

In this section, we discuss the considerations that motivated us to choose the model described in
section 3. This concerns both the set of descriptive elements that our model must support, as well
as the form that these elements must take.

2.1. Backward applicability

Our purpose is as much to represent existing object frameworks in a way that makes them more
useful and more usable, as it is to propose a methodology for building an object framework, with
a focus on detailed design and packaging issues. This means that we will be seeking a trade-off
between a set of constructs that can be easily mapped to existing frameworks, despite their inade-
quate documentation or less than perfect packaging (from an abstraction point of view) and a set

Page 3

of constructs that represent all that we would ever want to know about an object framework, and
that rely on the use of novel abstraction techniques. We will see examples of these trade-offs
throughout this section and the next.

2.2. Representing inter-object behavior

A framework involves the collaboration of several objects. Understanding what a framework does
and how it does it requires a description of the interactions between objects, or inter-object behav-
ior. Representing inter-object behavior poses a number of challenges, including: 1) choosing
between representing the computational versus functional properties of the system, and 2) choos-
ing a trade-off between flexibility and abstraction, on the one hand, and ease of verification, on
the other. We discuss the two sets of issues below.

Computational vs. functional aspects: The behavior on an object or system of objects may be

described in terms of computations or in terms of functions'. The computational description tends
to describe the behavior in terms of abstract, application-independent computational devices or
application-independent transformations of data, regardless of their semantics. By contrast, a
Sfunctional description describes inter-object behavior in terms of application meaningful and pur-
poseful behavior. Computational (abstract) descriptions are useful for verification and validation
purposes, and to ascertain the conformance of a given class/implementation to a desired behavior,
provided that both are described computationally. However, they do not promote understandabil-
ity and do not convey, in an application-meaningful way, the purpose of the behavior [Mili et al.,
1995] or relate it to developers/reusers’ needs.

The distinction between functional and computational aspects becomes fuzzier with design pat-
terns, and reusable designs in general, which are not distinguishable by what they do, but rather
by optimizing different design quality criteria.

Flexibility vs. ease of verification: One of the purposes of behavioral descriptions is to compare
requirements on framework participants, to actual specifications of candidate components. When
choosing a behavior representation language, we have to make sure that it is abstract enough to
support flexible matching between requirements and specifications that is independent of inessen-
tial implementation details. However, we also have to consider how to derive such specifications
for existing frameworks or for frameworks yet to be designed. Practically, it would be helpful to
have a simple relationship between such specifications and the actual code so that the specifica-
tions can be extracted, in part or in full, from the source code.

In existing frameworks, inter-object behavior is typically embodied in explicit cross-references
(calls) between object methods. Using such cross-references as specification for inter-object
behavior has two inherent problems. First, it dictates one mode of interactions between methods,
as opposed to another. For example, two processes or objects can communicate either through
interruptions or through explicit calls; our choice for showing inter-object linkage should be, to
the extent that that is possible, mechanism-independent. Second, if we use explicit cross-refer-

1. The philosophy of science makes one such distinction between behavior (which we call computation) and
function. Behavior is a simple input-output relationship, while function is behavior within the context of a an
englobing behavior [Darden & rada, 1988]

Page 4

ences, we impose a non-essential lexical coupling between methods and objects which makes the
inter-change of candidate objects very difficult. This is as much a problem with the detailed
design and implementation of the framework as it is a problem with describing it.

2.3. Describing usage

Describing the usage for a framework, or any other reusable component, involves two issues.
First, there is the issue of appropriateness of the framework to a given need or situation. Second,
there is of issue of describing how to use the framework. The issue of appropriateness or opportu-
nity is related to the description of inter-object behavior mentioned earlier. With application-spe-
cific frameworks, both the framework and developers’ needs will be expressed in the application
domain language. With design patterns, we need a computational abstraction of what the pattern
does, and a description of which design criterion it maximizes. This is the approach followed by
the design patterns community where textual documentation, albeit informal, is carefully struc-
tured so as to reflect these distinctions (see e.g. [Johnson,1992], [Gamma et al.,1995]).

With regard to the how to use aspects, in addition to the traditional information that a reuser needs
to know, such as the acceptable types of parameters, any side effects, object frameworks have the
distinction of requiring assembly. This may involve three things: 1) selecting participants, 2) pre-
paring participants so that they can interact with the other components of the framework, e.g. by
adding bridge methods, and 3) instance creation and linkage. The selection is usually based on the
role played by the participant. The preparation is often required because the actual participant that
plays the right role may not have the proper interface.

2.4. Scalability and extensibility

Scalability means that we should be able to build and describe complex frameworks by assem-
bling simpler ones, or, equivalently, we should allow the participant of a framework to be another
framework. Extensibility means that we should be able to incrementally augment or specialize the
functionality of a framework. These requirements imply that a framework be packaged as a unit
with its own external interface and its internal structure, similar to the way classes are packaged.

Finding the “external interface” of a set of interacting objects requires a closure operation on the
set of messages that they exchange within each interaction sequence so that, from the outside,
such a sequence may be assigned a method-like signature. This is difficult, both computationally,
and in terms of ascribing a useful meaning to the resulting signature-- not a problem with class
methods which tend to be cohesive. Another difference between class packaging and framework
packaging has to do with the information hiding that typically characterizes their respective
boundaries (see e.g. [Wegner, 1992]). While a class may be seen and reused as a black-box, to use
a framework, we need to have access to its participants. At best, a framework may be seen as
parameterized (generic) black-box.

2.5. Searchability

We envision a two-stage search. In the first stage, a developer specifies a need, and we have to

Page 5

find the reusable component that best satisfies that need. Depending on the need and how it is
expressed, the answer could be a method, a class, or an object framework. If the answer is an
object framework, we then have to search for suitable participants, or validate candidate ones.

The first stage of the search raises a number of issues related to the issues of closure, unit packag-
ing, and to the issue of computational versus functional descriptions. First, a developer’s need will
typically be expressed in a synthetic fashion without referring to a specific architecture or to a dis-
tribution of responsibilities between interacting objects, compelling us to find a synthetic way of
expressing the functionality of a framework that abstracts the specific participants. Second, a
functional need will often be expressed in terms of application semantics, which has to be
matched to whichever description is available for the functionality of the framework. Consider the
query “I need a way that allow me to represent dynamically the load of the CPU using a bar
chart”. If we had an application framework in the library which deals with processes, we may find
a single class, say ProcessMonitor, which does (encapsulates) just that. If not, we need to trans-
late the query into application-independent, programmatic terms, such as “I need a way that
allows me to represent dynamically the <attribute> of <an object> using <a graphical object>".
Such a query is “aware” of the distinction between a model object and a graphical object, and
might retrieve the MVC framework, if it were available. Yet a more abstract formulation might
say “I need a mechanism for propagating state changes between related objects”, which would
retrieve Smalltalk’s dependents mechanism, which is used, among other places, in the MVC.
Developers need to express their needs in whichever language can be matched to available, or
automatically derivable, descriptions for frameworks. Looking at the problem another way, the
above three formulations could also be successive translations by a search engine as it fails to find
adequate matches. They can also describe nodes along a generalization or extension path of
frameworks, moving from the {Process, ProcessMonitor} framework, to the {Model, View,
Controller} framework, to the {Object, Dependent} framework .

The second phase of the search involves interface matching between framework participants and
concrete classes. Our major concern is that such a matching be workable on existing class librar-
ies, without requiring extensive manual packaging.

3. Model and implementation

In this section, we describe our model for representing object frameworks and the prototype
implementation that we are currently developing. Our presentation will focus on those aspects
which are inter-dependents and which involve some of the trade-offs discussed above. First, we
motivate the major constructs used to represent object frameworks through two examples. In sec-
tion 3.2, we summarize the representation model. In section 3.3, we discuss our approach to the
unit packaging of object frameworks. We conclude in section 3.4 with some implementation
notes.

1. It should be {Object,Object}, but for readability purposes, and because framework participants would
refer to interfaces rather than classes, we use this characterization.

Page 6
3.1. Example

We take the example of two frameworks that are part of the OSE Library [Dumpleton,1994],
which are aimed at building process simulation systems (OTC_Simulation_Systems), and event-
based systems (OTC Event Based Systems), respectively. The frameworks weren’t referred to
as such in [Dumpleton,1994], but the -- unusually high-quality-- documentation described the
component classes together. We use these examples to discuss the descriptive elements of the
framework, and address some of the packaging issues raised in section 2.

3.1.1. Describing what a framework does

In process simulation systems, there is a queue of jobs to be executed. A dispatcher retrieves the
first job from the queue and executes the code associated with it. The OTC_Simulation Systems
framework offers two generic classes, OTC_Job and OTC_Dispacher. A potential instance of
this framework must include one or more instances of-- possibly different- subclasses of
OTC_Job, and a single instance of a class that specializes OTC_Dispacher. We call these poten-
tial instances the participants of the framework. Each of these participants has to satisfy a prede-
fined interface. For example, a job must understand the messages execut e(), destroy(),
etc. We show below what the specification of the participants and their interfaces looks like. We
will be using what amounts to a C++-like notation, with some syntactic sugaring, to describe
framework specifications and actual implementations.

Framewor k OTC_Si nmul ati on_Syst em
{
Participants :
Interface : Dispatcher {
Attributes :
| obQueue Queue;
Si gnatures :
void initialise();
void initialise(lN queue Queue);
voi d schedul e(I N job Job);
| nt eger run();
| nt eger di spatch()

Interface : Job {
Si gnatures :

voi d execute();

voi d destroy();

}
Interface : OIC Queue {
Attributes :
j obs Li st<Job>;
Si gnatures :
void add(IN job Job);
Job next();

Page 7

}
d Di spat cher;
] * Job;
q Queue

o

Notice that both Di spat cher and Job are names of interfaces, which may or may not corre-
spond to actual classes. In practice, however, interfaces are typically represented by abstract
classes and to make sure that candidate participant classes support such interfaces, we require that
they be subclasses of the abstract class. The next figure shows one such class, Count _Job.
The class Count _Job provides implementations for the methods required in the interface, and
adds its own methods and instance variables.

Cl ass Count _Job : public OTC Job {
public:
Count _Job()
:runnabl e(OTCLI B_TRUE) {};
void kill () { runnable = OICLI B _FALSE; }
voi d execute();
voi d destroy();
private:
static int count;
OTC _Bool ean runnabl e;

The interaction between the participants of the framework may be described using the following
cycle:

. The dispatcher receives the message r un() ,

. The dispatcher sends the message di spat ch() to itself,

. The dispatcher sends the message next () to the queue, which returns some job jb,
. The dispatcher sends the message execut e() to b,

. When the jb terminates, the dispatcher sends it the message dest r oy() .

There are different ways of representing this interaction. A plausible C++ implementation might
look like the following:
voi d Di spatcher::run() {
Int result = 1;
while (result > 0) result = dispatch();
return result;

}

I nt Di spatcher::dispatch() {
Job * jb;
j b = jobQueue -> next();
if (jb ==0) return O;
j b -> execute();

jb -> destroy();
return 1;

In this implementation, the message di spat ch() refers explicitly to the messages of the other
participants that are involved in this sequence. Such a practice is to be discouraged both for
describing inter-object behavior and for implementing it, as mentioned in section 2.2. Our

Page 8

approach for representing this behavior is to use a generic message connection notation which can
be easily mapped to a variety of message connection mechanisms and control paradigms. For the
time being, we use a single connector denoted by => . The symbol « is used for assignment.

i <-qhext()
d Grun() = d Wispatch() = | i Gexecute()
i Westroy()

The message sequence shown above corresponds to a unit of behavior that can be performed by
the framework. For scalability purposes, we need to package this unit as a single message (see
section 2.). This requires a closure operation on message sequences that assigns to a message
sequence a single message that has the same external signature as the original sequence. Figure 1
shows a message flow graph where a boundary is drawn around the components of a framework.

Figure 1. Message flow graph MF

Through closure, MF can be considered as a single message addressed to the framework as a
whole, and whose inputs are INPUTS(MF) = {p,, p;} and whose outputs are OUTPUTS(MF) =
{ps.ps}- In general, we can define INPUTS(MF) as the minimal set of parameters that would ena-
ble the triggering of all the messages in the flow graph. In this case, these are the input flows that
have not been produced by any other message. Similarly, we can take OUTPUT(MS) as the set of
all outputs that were produced but not consumed by other messages. Other closure formulas are
also possible.

A more useful characterization of message flow graphs takes into account the side effects of the
messages being executed, in addition to inputs and outputs. The side effects include state changes
for pre-existing objects, and the creation of new objects. Both can be captured using pre-condi-
tions and post-conditions. Pre- and post-conditions follow a somewhat similar pattern to the
inputs and outputs, but expressed in logical terms’. Short of characterizing those side-effects pre-

1. This is special case of the identity wp(S;=> S,,R) = wp(S;,wp(S,,R)), where wp stands for weakest pre-
condition, R stands for a desired result (post-condition), and S and S, stand for two programs [Dijsk-
tra,1976].

Page 9

cisely and being able to reason about them analytically, we chose to extend the definition of mes-
sage output to include the object being acted upon (and possibly modified), and the objects being
created. In other words, we view the output of a message as a triplet <receiver, created objects,
actual outputs>. Consider the following example:
void Dispatcher::initialise() {

Queue* q;

g = new Queue;

initialise(q);

void Dispatcher::initialise(Qeue* jq) {
j obQueue = jq;

With our definition of message output limited to return values, the above sequence (flow) can be
represented by the sequence MS = d.initialise() = d.initialise(q) and INPUT(MS) = {q}, which
is not accurate. With our new definition of output, INPUT(MS) = { }.

In addition to the closure on inputs, outputs and side effects, we need to assign a single name to
each message flow graph. This name, chosen by the framework ““packager’’, is used to refer to
the message flow graph when we embed a framework within another.

3.1.2. How to use a framework

As mentioned earlier, in the actual simulation framework, the interfaces Job, Queue and Dis-
patcher are, in fact, abstract classes. As such, some of their methods are already fully imple-
mented and some are pure virtual. In order to use the framework, we need to subclass these
classes with the option of redefining existing methods, and the obligation to define the pure vir-
tual ones. This kind of information depends on the fact that interfaces are actual classes, and on
the semantics of C++. In fact, we consider this as two pieces of information. The first is the inter-
face of the abstract class (without implementation), and the second is an implicit assertion which
says that this abstract class provides a partial implementation for this interface. For this reason,
we decided not to include information about which methods to redefine and which to implement
in the formal description of the framework itself. For the time being, this kind of information is
included in a textual attachment.

To create an actual instance of the framework, we need an instantiation scenario. The documenta-
tion typically shows code fragments of some “mai n() >’ program with a set of declarations, par-
ticipant initializations, and inter-participant connections. The code fragment below shows an
example instantiation scenario taken from [Dumpleton,1994]:

mai n()
static OIC Job | ob;

OTC Di spatcher::initialise();
OTC _Di spat cher:: schedul e(& ob);

Page 10

Notice the declaration of j 0b, and the call to “schedul e(& ob) >’ which connects job to the
job queue of the dispatcherl.

Typically, the documentation combines instantiation and example usage (in the form of a message
sequence) in the same code fragment. We chose to isolate the creation and connection part and
package it in a function whose parameters are initialization parameters for the various partici-
pants. If the framework were to be considered as a C++ class where the participants are data
members, this would be a constructor. The difference between a typical constructor and a frame-
work instantiation scenario is the way the various participants are scoped and interconnected. In a
regular class, data members are referred to by name, live beyond the call that initialized them, and
all have the same life span. In our case, instantiation scenarios must return one of the participants,
and that participant must have explicit connections to the others. This is another example of bind-
ing between participants that should be avoided, both in specifications and in implementations.

For specification purposes, we choose to specify (“‘code’’) instantiation scenarios like construc-
tors, i.e. referring to participants by name as if they were data members (see Figure 3). It is rela-
tively easy to go from this kind of specification to actual C++ code that includes local declarations
of the members, but the opposite is not true since we couldn’t tell which local variables are partic-
ipants, and which are not.

3.1.3. When to use the framework

Given all the difficulties discussed in sections 2.3 and 2.5, for the time being we focus on semi-
structured textual descriptions such as the ones used for design patterns. Gamma et al. used three
descriptors called Intent, Motivation, and Applicability [Gamma et al., 1995], which convey two
pieces of information: 1) what the design pattern achieves in terms of attaining some design goal
(e.g. platform independence)-- embodied in Intent. and 2) situations in which such a design goal is
desirable (Motivation, which gives an example, and Applicability which gives rules for recogniz-
ing such situations). Neither piece of information is derivable, even remotely, from the behavioral
specification of a design pattern, and such information has to be entered manually. With applica-
tion-specific object frameworks, the nature of the participants is indication enough of the opportu-
nity for using a framework, and this becomes more of a search issue.

3.1.4 Extending the framework

The simulation system (SS) framework is used to implement the event-based system (EBS)
framework. The two frameworks has several relationships, including:

Addition of new classes participants and/or specialization of existing ones: OTC_Dispatcher
and OTC job facilities are mainly extended by the classes OTC Event (events) and
OTC_EVAgent (agents). An event may be created and sent to an appropriate agent. The delivery

1. For readers not familiar with C++, the syntax OTC_Di spat cher: :initialise(), where

OTC_Di spat cher is the name of the class, suggests that the method i ni ti al i se() is a static member
of the class (equivalent to class method in Smalltalk) and that we assume that there is a single dispatcher per
program run.

Page 11

of an event to an agent is made by creating and adding a job to the dispatcher queue with the
«queue» method of the event. For an event e and an agent a the message is «e-
>queue(a. i d())». The created job is different from the others of the simulation system. For
this purpose, the EBS framework derives a new class from OTC _Job (OTC_EventJob) with some
extra facilities to take into account the particularity of event jobs as shown in the following code.

class OTC EventJob : public OIC Job {
public:
int target()const {return nyTarget;};
int event() const {return nyEvent;};
void execute(); // Delivers the event to the agent

private:
int nyTarget; // the ID of the agent.
OrC Event* MyEvent; // the event

An event can also be sent without creating a delivery job; this is possible by using the «deliver»
method of the event. In this case we don’t need to use the dispatcher queue.

Extension of message flow graphs: The queued delivery of events to agents uses the simulation
framework’s basic “run” cycle (select, run, destroy). The created event job is scheduled like any
other job type and is selected from the queue. The following code shows the method «queue» of
OTC _Event:

voi d OTC _Event:: queue(int theAgentld)

{ OTC _Event Job* theJob;
t heJob = new OTC_Event Job(theAgentld,this);
OTC _Di spat cher: : schedul e(t heJob);

}

Thus, whereas in the simulation systems (SS) framework we schedule a pre-existing job j using
the sequence MS; d.schedule(j) = q.add(j), the event-based system framework enables us to
schedule the delivery of an event e, i.e., it supports the longer sequence MS, e.queue(id) =
d.schedule(j,;) = q.add(j;,). In this case, a sequence of SS is a suffix of a sequence of EBS. In the
more general case of message flow graphs (instead of linear sequences), we can have more com-
plex relationships, based on graph inclusion. For example, the SS framework supports the follow-
ing message flow graph, MF,, where the (round) bracket notation means that three piled messages
are triggered by d.dispatch(), and are executed in the sequence top to bottom:

i <-qlhext()
dOun() = d Wispatch() =| i Cexecute()
iDiestroy()

The EBS framework, on the other hand, supports a different version of execute, which, in turn,

Page 12

triggers a sequence of two messages, yielding the following flow graph (MF,):

i <-qhext()
dOun() =dWispatch() =| i Cexecute() = e Weliver(id) = a thandle(e)
i Westroy()
One of the differences between this extension and the previous one is that the trace of MS; was
included in the trace of MS),, while this is not the case for the pair MF;, MF,. We define message
flow graph extension informally below; we first define message pair specialization:
Message pair specialization:
A message pair x.f(...) = v.g(...) specializes x".f’(...) = v’ .g’(...) iff:
. x’is identical to, or specializes x, and "’ is identical to, or conformant to
. vy’ is identical to, or specializes y, and g’ is identical to, or conformant to g
Message flow graph extension:

A message flow graph MF'; extends a message flow graph MF, iff:

. For all message pair x.f(...) = y.g(...) in MF'», there exists a message pair
xf(..)=y.g(..)in MF that specializes it, and
. For all message cascade x.f(...) = y;.g;(...) (OP; y;.gi(.)) in MF,, there

e\l?t? a corresponding message cascade x'.f (...) = v'5.g2'5(..) (OP;
g il)) in MF; such that for all i, x.f(...) = v,.g;(...) specializes x’.f(...)
:>y -8 il
The operator OP; stands for explicit sequencing (corresponding to pile notation in the examples
shown above) or parallelism.

The two basic relations between framework components support two kinds of relationships
between frameworks: generalization, and aggregation. Generalization is based on the substituta-
bility principle: A framework F'; specializes a framework F, if wherever F, is expected F; can ful-
fill its role. This means that F; has at least the same components as F, (or behaviorally
conformant ones), and if the message sequences restricted to those common components are
equivalent. Formally:

Framework generalization:

A framework F; with participants P,,...,P,, and message flow graphs MF,...,.MF,,
is a specialization of a framework F’; with participants P’;,...,P’, and message
flow graphs MF",... . MF"), iff:

. For all I i< n, there exists 1 < j < m such that P’; is a specialization of
(or identical to) P;
. Forall 1 v <p, there exists 1 <s < o such that MF ' extends MF,.

Framework aggregation is defined in such a way that references to F;’s participants in F, be
removed and replaced by a reference to a single participant whose interface is (a subset of) F';’s
interface. Let PART(F) be the set of participants in a framework, and PART(MF) the set of partic-
ipants. Semi-formally:

Page 13

Framework aggregation:

A framework F; with participants P,...,P,, and message flow graphs MF,,...MF,
is a component of a framework F’; with participants P’,,...,P’, and message flow
graphs MF”y,.. . MF"’, iff:

. Forall 1 Si<n, there exists 1 <j < m such that P’; is identical to P;

. For each MF’; of ', such that PART(MF’) N PART(FI) # O, there exists a
message flow MF of Fy such MF' = MF; U MF’ ; and PART(MF ;) N
PART(FI) o’

In the above definition, ///" ; is the message flow graph obtained by «gutting out» M/ of the
message pairs or cascades found in MF;.

We have just begun to explore the relationships between frameworks found in actual code librar-
ies, and our experience has been that the relationship between any two frameworks to be a com-
plex combination of aggregation and generalization relationships between the frameworks
themselves and/or common subcomponents or generalizations. One can imagine a frameworks
browser that generates (virtual) common generalizations of frameworks, e.g., for the purposes of
navigation.

3.2. Representation model

The previous examples illustrated only some aspects of object frameworks. We introduce in this
section the full notation, and discuss those aspects not brought up earlier.

The description of an object framework consists of five descriptive slots, as shown below:

Framewor k <nanme> {
Vari abl es:
Vari : Typey;

Partici bants:

Part, : Interface; ;
Const rai nt s:

Rel ¢(Part;,...,Part;,Vary ..., Vary);
Tasks:

Task, (I npq : IN Inp. IN T;,
! tut: odf T, .. out,: OUT T)

{
Part,.f(Inpy) = Partj.f(lnpj)

I nstanti at i ons:
Scenariog; (p1: T1,....pj: ™)

artq.initialise(pq);

Page 14

The slot variables contains variables which are specific to the framework as a whole, but not
related to any participant in particular. These could be state or stafus variables, or variables used
to bind participants to each other. For a model/view framework where model changes are buff-
ered, a state variable could indicate whether the model and the view are in sync. Another use of
variables is illustrated below.

Constraints describe invariant relationships that must hold during the lifetime of the framework.
An object framework may go through a transitory phase during which a constraint is not satisfied,
but the idea is that if a transaction completes successfully, all constraints should be satisfied in the
end. We distinguish between three kinds of constraints, 1) constraints between participants, 2)
constraints between a participant and a variable, and 3) constraints between a participant and a
constant. Constraints between participants take the form of a relationship between their attributes
[Mili, 1996]. In a model/view framework, we can constrain the value of an instance variable of
the model to the height of the graphical bar (a view) representing the model in a bar chart (a com-
posite view). Constraints between participants and variables may be used to represent dependen-
cies between framework participants and the outside environment. If the variable represents a
sensor, e.g., this would be one way of relating sensed data to the participant responsible for han-
dling it. Constraints between participants and variables may also be used to represent a many-to-
many constraint between n participants (e.g. n x(n+1)/2 connections) by a n connections to a com-
mon variable.

Constraints and message flow graphs are tightly coupled. Message flow graphs which, transito-
rily, violate constraints will contain subsequent messages which re-enforces them. Conversely,
what would have been a single state-modifying message on a constrained participant, becomes a
trigger for an entire message flow graph whose sole purpose is to re-establish the constraint. In the
model/view framework, the methods that change the state of model (m) variables that have a
graphical rendering have to call the methods that update the view (v) ‘s corresponding parameter,
and its graphical display, as in!:

m set<an attribue nane>(x) — v.update(<an attribute name>, x)
We can go one step further. If we represent a constraint such as:

m vol unme — v. bar Hei ght

where — means that whenever the left hand side changes, the right hand side has to follow suit,
we can imagine a constraint parser that automatically adds a call to v. set Bar Hei ght (x) at
the end of the method m set Vol unme(x) . Alternatively (and more easily), the constraint parser
can add an after-method to the call to m set Vol une(x) .

We believe that given a catalog of such constraints and corresponding transformations, we can
account for most of the cases of inter-participant constraints and message connections. This

1. In Smalltalk’s MVC, such connections are achieved as follows: 1) views are made dependents of models,
and 2) whenever a model changes state, it broadcasts a messages to its dependents notifying them of the
change, and 3) dependents decide whether to react to the change, depending on the nature of the change.
This scheme relieves models from knowing specifically which view method to call in each case.

Page 15

approach would have several advantages:

. Simplifying the specification of object frameworks: all we have to do is specify the con-
straints, and the message sequences/connections will be derived automatically,

. Ensure static connections between the participants without having to create named
instance variables that point from one to another,

. Ensuring message connections between the participants implicitly, by avoiding the lexical

binding between their methods.

Admittedly, the interconnections within an object framework involve more than propagating state
variables. Further, a specification method has to accommodate existing frameworks, and possibly,
support the extraction of such specifications from the code; if existing frameworks are not pro-
grammed according to this constraints style, it will not be possible to delineate such constraints
and their enforcement sequences. Theoretically, however, we can represent and implement behav-
ior and behavioral composition using logic and constraint-logic programming languages (see e.g.
[Saraswat,1989],[Wilk,1991], [Freeman-Benson,1989]). Further, we have shown in [Mili,1996]
that we can support behavioral composition within an imperative language using a combination of
constraints and a properly tuned message-sending protocol.

For the time being, we will use the constraint notation for documentation purposes only. Further,
we include message sequences in the description of a framework even if all the sequences can be
inferred from the specified constraints. In the long run, we advocate a constraint-based inter-
object behavioral composition. We are currently developing a set of practical design guidelines
based on the results in [Mili,1996], and intend to try them out to re-engineer a number of existing
frameworks, including the event-based simulation framework mentioned earlier.

3.4. Prototype framework browser

To date, we have implemented the representation part of our representation of object frameworks
and the search engine. Two considerations guided our implementation: 1) integration into a
(research) prototype class library tool, and 2) assuring representation uniformity between class
descriptions, interface descriptions, and framework descriptions. Figure 2 shows a simplified data
model for the representation. For each of the two hierarchies in Figure 2, we have a generic class
(BehaviorDesc and ComponantDesc) and two specialized classes, one related to frameworks and
the other to participant interfaces. The structure and behavior supported by the generic classes
support the closure operations mentioned earlier, and hence the embedding of framework
descriptions. We discuss below some aspects of the model in more detail. The attribute ‘variables’
of the class ComponentDesc is used to represent both instance variables for regular classes and
class interfaces, and framework variables, as explained in section 3.1.2. Signatures accounts for
both method signatures (for regular class interfaces) and task signatures (see section 3.1.1 and
3.1.2). The subclass FrameworkDesc has an additional three instance variables corresponding to
the participants, structural constraints, and instantiation scenarios, respectively. The representa-
tion of actual classes is not shown in Figure 2. Suffice it to say that our library tool supports the
representation of various inferfaces or views for the same class!. Practically, this means that
classes are aggregations of ‘ClassInterface’s. It also means that when we look for potential partic-
ipants for a chosen framework, we would actually be matching the class interfaces that represent

Page 16

VariableDesc
name
BehaviorDesc type
TIAITIC
inputs
outputs
inoutputs
returned Type ComponantDesc
| name
variables
| | signatures
TaskDesc MethodDesc)\
messageSeq mapsTo
1+ createdObjects
1+ 1+
o S |
LTG0 Iy ClassInterface | Globallnt
participants NCT, classInterface
structConstraints p super
instScenario l
Message 1+
TeTUrn Var Constraint ParticipantDesc
receiver I left —[name
method right interfaceDescription
listeParam link
|

participants to those that represent views of classes.

Figure 2. implementation model

Figure 3 shows a prototype frameworks editing tool. The top section, with three lists is self-
explanatory. The middle section consists of the various participants, along with their interfaces.
The currently selected participant, j, is of interface Job. The lists «Operation signatures» and
«Attributes» describe the interface Job. The «Tasks» section of the interface lists the signatures of
the tasks, and the corresponding message sequences. Messages sequences are first entered in the
text area, and then «compiled». The «compiler» prompts the developer for a name and a return
variable (hence type), and generates the rest of the signature using the default closure formula (see
sections 3.1.1 and 3.1.2). The developer has the option of adding or removing outputs from the
signature. The «Instantiation scenarios» section is similar in principle to the tasks section.

We have implemented additional tools for visualizing and editing textual documentation for the

1. This concept is a generalization of C++’s three visibility interfaces, private, public, and
protected: each class can have several interfaces which are made available to, possibly dif-
ferent, kinds of server programs

Page 17

frameworks. Both tools can be invoked through action menu options within the «Frameworks»
list.

& [~ Framework Documentation Tool

Structural constraints Variables

Participanis

Hames Operation signatures Attributes

Instanciation scenario

Message sequences

Figure 3. Frameworks browser tool.

4. Framework search and realization

Frameworks are but one kind on reusable components that developers can search for, browse, and
integrate into their own applications. We set out to develop a family of search algorithms that can
locate object frameworks based on intrinsic structural and behavioral information as well as
extrinsic information such as external textual documentation and a faceted classification. Because
we used a representation of frameworks that is similar to that of classes!, we were able to port
those search algorithms that use extrinsic information that we had first developed for class com-
ponents (see e.g. [Mili et al.,1997]) to work for both kinds of components. Such algorithms

1. The factorization shown in Figure 2 took place after we had implemented class representations.

Page 18

included string search algorithms and multi-faceted component retrieval algorithms. Experiments
with users showed that string-search algorithms performed better than multi-faceted retrieval
algorithms [Mili et al., 1997], and were not explored any further in the context of frameworks. We
will limit our discussion to search methods on intrinsic information, and more specifically, signa-
ture matching algorithms. Query formulation and the actual signature matching are discussed in
section 4.1.

Unlike the case of class components, which are reusable as is, frameworks are abstract descrip-
tions of collaborations of classes playing specific roles, and they need to be realized or concre-
tized using actual domain or library classes. Realizing a framework involves finding or creating,
for each participant interface, a class with the proper role in the underlying application (domain)
that satisfies the interface. Framework realization also involves interface matching, and we will
discuss potential problems due to cyclic type references and ways to address them. Framework
realization is discussed in section 4.2.

4.1 Formulating and matching interface queries

Referring to the two-stage search discussed in section 2.5, the first stage consists of searching for
a framework that satisfies a number of criteria. We implemented a framework matching algorithm
based on signature matching. Broadly speaking, a developer specifies a class-like interface for
which he wishes an «implementationy, and the system looks for reusable components that support
the interface. Those components could be either single classes or frameworks whose message
sequences and instantiation scenarios have been abstracted or «closed» into signatures. We will
first describe query specification, and then the actual matching.

Figure 4. Interface matching query tool.

Figure 4 shows the query interface tool. A developer specifies the query in the upper part of the
window, and the results are shown in the bottom part. A query consists of a set of method signa-
tures, along with those types that are referenced in operation signatures, and that are not in the
library. For those types, the developer needs to specify a list of equivalent types/interfaces from
the library so that matching can take place. In the above example, if the developer has asserted
that Job was «equivalent» to any of OTCJob, OTCEventDelivery, or OTCProcess, then we would
be looking for any component that supports a method with signature

voi d execute()
and any one of the following signatures:

voi d enqueue (I N nyJob OIrClob), or
voi d enqueue (I N nyJob OICEventDelivery), or
voi d enqueue (I N nyJob OTCProcess)
Deciding on the equivalence of Job to OTCJob, OTCEventDelivery, and OTCProcess, may itself

be the result of an interface matching operation: upon realizing that Job is not defined, a developer
may choose to spawn another search window, and specify the interface of the new type using
method signatures. This potentially recursive process has to have a termination: either the devel-

Page 19

rﬂ Query Tool it

Query name] Makch bype

Types

»
Jdah

Joh)

Componanls Descnpllon
.

OTC_SimulationSystem ir‘an]p\l,;gﬁ\ OTC_Sirmulati

J U
{
Variables :
-'.'
Partlmpants :
1
Interfac er
r
|

oper specifies an interface in terms of known types, and the search tool is able to match it to exist-
ing components, or s/he asserts the equivalence of types explicitly.

L =h

The actual interface matching ignores method names, and uses type matching. We support two
variations of the matching algorithm, an exact match, which takes into account parameter type
positions, and inexact match, which does not take into account positions. Matching can return
either a single class interface or a framework interface. The «Description» subpane shows a tex-
tual representation of the interface. For the case of a framework, the textual representation is gen-
erated from a template using the structural representation of the framework. For the case of a
class, the textual representation consists simply of the C++ header file. The «Participants» sub-
pane lists the set of participants-- the case of frameworks-- or data members/instance variables,
for the case of classes. The example of figure 4 shows a framework interface.

4.2 Framework realization

Recall that a framework is a design idea or an execution pattern and not an executable piece of
code. Hence, once we have found a framework that satisfies some external behavior, we have to
find a realization or specific implementation of the framework within the context of the applica-
tion at hand. Formally, we have to find implementations for the participant of the framework. A
complete (partial) realization is one where we find an implementation for each (some of the) par-
ticipant in the framework; the implementation of a participant may be found in the library of com-
ponents, or may have to be constructed. In general, the participants that play an application
independent role are provided in the library, while the ones that depend on the application at hand
are to be constructed or otherwise provided by the framework user. For example, in Smalltalk’s
Model-View-Controller framework, only the model classes have to be provided by the framework

Page 20

user (developer); the Smalltalk class library contains classes that implement most of the common
view and controller behaviors (modulo few parameterizations).

Symbolically, let {;, I,,...,[,} be the set of participant interfaces to be matched and Imp(/;) =
{C; 1>----C; ;) the set of classes that match the interface /;. A realization of the framework consists
of a tuple <Cj,...,C,> where C; UImp(/;). Note that we could have /; = /; for some i # j because
the framework can have more than one participant with the same interface. Further, for a given
pair i,j such that /; = I;, we could have C; # C; if we choose different implementations for two par-
ticipants that have the same interface.

In existing frameworks, the distinction between participant specifications (interfaces) and actual
implementations is not very clear as a class would represent both. Further, language properties
such as typing and early versus late binding, and programming style, may further confuse matters,
making interfaces and implementations virtually inseparable. For example, in a language such as
C++, participant interfaces are embodied in abstract classes from which actual participants have
to inherit. To complicate matters further, the abstract classes themselves may be partially imple-
mented, and only a handful of methods may have to be defined in the derived subclasses. Further,
the participants of a framework refer to each other, as in the case where the method of one partic-
ipant uses another one as a parameter. In typed languages such as C++, where subclassing is used
as the subtyping mechanism, we are forced to represent even the application-dependent classes by

actual C++ abstract classes from which the framework users have to derive the actual classes ..

Within the context of our prototype, finding the implementation of a particular framework partic-
ipant involves performing signature matching between the interface of the participant and inter-
faces of concrete library components. A concrete library component is a component that has a
source code equivalent. Typically, most of the components in the library are concrete and are
obtained by parsing source code files and loading the resulting structures in the tool set (see e.g.
[Mili et al., 1997]); non-concrete components may appear as participant interfaces in framework
descriptions, or framework interfaces themselves. In practice, referring back to the object model
of Figure 2, for each C++ class read in the input, we create an instance of the class ClassInterface
that represents the locally defined (or redefined) members of the class, and that points, among
other things, to the actual source code. The actual interface/type of the class includes not only
locally (re-)defined members, but also inherited ones, and is only computed when needed during
matchingz.

For the case of C++ frameworks, the interface of a framework participant-- a non-concrete library
component-- may match the interface of a C++ abstract class C,-- a concrete library component
according to the above definition. If we choose such a class in the implementation of the frame-
work, we still wouldn’t get an executable framework realization. However, if during framework
instantiation, we use an instance of a concrete subclass (in the programming language sense) of
C,, we will be fine. Further, we may be forced to use only subclasses of C, for type compatibility

1. In Smalltalk’s MVC, the class library contains an «abstract class» called Model although developers need
not subclass it for their application-specific classes.

2. One of the consequences of this on-the-fly computation of interfaces is that we don’t have the notion of
type identity («equality», ==); instead, we have type equivalence (=).

Page 21

reasons. For instance, to obtain the formal/abstract description of the framework
OTC_Simulation System discussed earlier (see sc. 3.1), we abstracted code level dependencies
between the participants by replacing classes by the types they implement. However, we cannot
obtain a realization of the framework by taking any combination of implementations of each of
the participants; this is one of the problems that give rise to the factory method or factory class
pattern (see e.g. [Gamma et al., 1995]). For example, the class Dispatcher (which «implements
the interface» Dispatcher) refers to the abstract class Job in its source code. Thus, if we use the
class Dispatcher in the simulation system framework, we have to-- from a programming language
point of view-- use a subclass of the abstract class Job. Symbolically, this means that if {/;,
L,,...,1,} is the set of participant interfaces to be matched and Imp(/;) is the set of classes that
match the interface /;, the set of realizations <C,,...,C,> of the framework, where C; UImp(/)), is
not the cartesian product Imp(Z;) x ... x Imp(Z,)), but rather a proper subset thereof.

What all of this means is that, notwithstanding the lack of behavioral considerations in interface
matching, code-level dependencies further weaken the effectiveness of interface matching as suf-
ficient conditions for the realizability of a framework. Of all the classes whose interfaces match
that of a participant, we have to
. Exclude abstract classes-- because they are not fully implemented-- and
. Make sure that the concrete classes that we use are subclasses of the abstract classes that
are explicitly referred to in the source code of the other participant implementations.
This last condition creates a circular dependency between the participants, but that is a reflection
of the kind of dependencies that exist within existing framework implementations. This circular-
ity of reference may manifest itself at the interface level. Consider a framework with two partici-
pants with interfaces /; = {f(int,/,)} and /, = {g(int,/;)}, and the classes C; = {f(int,C,)} and C, =
{g(int,C;)}. We can assert that C; matches /; only if we can assert that C, matches /, and vice-
versa. This is a constraint satisfaction problem whose solutions are tuples of mutually coherent
participant implementations. Our current implementation of the prototype does not perform this
global realization process, and the developer has to choose a realization one participant at a time.
In case of a non-circular chain of dependencies, the developer has to find an implementation for
the first element of the chain, and from that point on, the system is able to suggest the others. In
the example shown in Figure 5, we were only able to assert that the class OTCDispatcherGI
matches the interface Dispatcher because we had already established that OTCJobQueue (2nd
line of the left side ‘signatures’ list) matched the interface Queue, and that OTCJob (10th line of
the same list) matched Job; if we hadn’t, we wouldn’t even have been able to suggest/suspect that
OTCDispatcherGlI is a candidate for the interface Dispatcher.

Page 22

Framework Participant Signature

Framework

pariticipant realisation

FSESSS———————_qp
=1

{Interface: ClassOTCDispatcherGl)

signatures

1 1M P11 Job)

Figure 5. Framework realization interface.

We find this dependency on the order in which the participants are «realized» unacceptable, and
we introduced the concept of conditional matching whereby an implementation is presented as
satisfying an interface if some <interface, implementation> pairs are shown to match. For exam-
ple, consider the interface /; = {f(int,/;)} and the class C; = {f(int,C,)}, we can say that /;
matches C; if (and only if, in this case) C, can be shown to match /,, or

Match(l4, C)) 0O Match(l, C)
For each participant interface / and library class C, the expression ‘Match(Z,C)’ can have 4 possi-
ble values:

. unknown, in case the pair has not been evaluated,

. (provably/proven) false, in case it has been evaluated and was found to be false, independ-
ently of everything else,

. conditionally true, in case it was evaluated, and was found to be true provided that

Match(Z’,C’), for some pairs <I’,C "> where I’ was referenced in / and C’ was referenced in
C, was either unknown or found to be conditionally true, and

. true, if it was evaluated and was found to be true.

When the value of an expression Match(Z,C) is changed, from ‘unknown’ to one of the other val-

Page 23

ues, or from ‘conditionally true’ to either ‘true’ or ‘false’, that change is reflected on the condi-
tionally true expressions Match(/’,C") that depend on Match(/,C). In essence, we have a truth
maintenance system/network that is updated through developer actions. Under this new version,
the matcher still does not attempt to find a global solution on its own, but at least the developer
will have, from the start, all the information s/he needs to find such a solution, one participant at a
time, and will be guided by the dependencies through the process.

Note that a given class C; can match an interface /; in several ways, and have a different justifica-
tion/precondition for each one. Consider the interface /; = {f(int,/,), g(int, /3)} and the class C; =
{h(int,C,)}. C; can match /; in one of two ways:

Match(l,, C) U Match(l, GC)),or

Match(l4, C) [Mtch(l;, G)
which correspond to mapping function f(.,.) to h(.,.) versus mapping g(.,.) to h(.,.). When we
present a solution to the developer, we have to specify the exact mapping between types and
implementations. In general, a single component realization may itself be seen as a set of pairs
{<1,,C;>,..,<l,,C,>} where Match(Z,C) evaluates to true for some pairs, and to conditionally
true or unknown for the others. We are currently experimenting with variants of the rudimentary
interface shown in Figure 5 to integrate the new information (specific type mappings for a given
<[,C> pair, and their status), and to offer the required functionalities to incrementally build and
visualize the framework realization.

4.3 Discussion

When we set out to develop a representation of frameworks, applicability to existing frameworks
was a major concern. Another overriding concern was a non-commitment to an interaction/coor-
dination mechanism between framework participants, hence the idea of message sequences to
represent inter-object behavior. This representation is well-suited for describing and reasoning
about frameworks; it breaks down, however, when we deal with the actual realizations because of
hidden/abstracted code-level dependencies between participant realizations.

We have long advocated (see e.g. [Mili et al., 1990], [Mili, 1996]), along with others (see e.g.
[Borning,1986], [Freeman-Benson,1989], [Wilk,1991]), a declarative inter-object behavioral
composition mechanism, as a way of building independently reusable objects, and of providing
greater possibilities for behavioral composition [Mili,1996]. Roughly speaking, objects respond
to messages by executing methods and by notifying other interested parties (other objects or ‘con-
straints’) of any state changes that may have resulted. This notification will in turn trigger other
objects to execute other methods, and so forth. What makes this mechanism effective is the fact
that the notifier need not know explicitly the identity of the objects to be notified (their ids or even
their classes), nor the specific actions (methods) to take in response to those notifications: this
information resides in an external ‘table’! that can be updated programmatically, instead of being
hard-wired in the source code of the participants. This paradigm serves as the basis for many user
interface frameworks (see e.g. [Barth,1986], Smalltalk’s MV C), but rarely followed to the letter in
industrial strength frameworks, in part for efficiency reasons. Our structural model of frameworks
provides for the representation of such dependencies (constraints and, to some extent, variables,

1. much like a dispatch or an interrupt table

Page 24

see section 3.2) and we can imagine either a «framework compiler» that would translate such con-
straints into explicit calls between framework participants, or a «run-time dispatcher» that would
assure the coordination during execution.

Other behavioral composition paradigms could be considered, but they too, would involve a dif-
ferent programming style. One such paradigm consists of coding framework participants as
parameterized/generic types a la Ada’s generic packages or C++’s templates (see e.g.
[Tracz,1993]). For example, using C++’s templates, we could define the class Dispatcher as fol-
lows:

t enpl at e<cl ass Job> cl ass Di spat cher {

voi d schedul e(){
if (_currentJob->getPriority() > ...)

}

pﬂvdég
Job* _currentJob;

}

In this case, we can use any actual/concrete class in lieu of the type parameter Job as long as it
supports the methods invoked on it from Dispatcher s methods (e.g. the method ‘getPriority()’ in
the above example). This solution does not limit us to subclasses of some predefined abstract
class, as was the case with the OSE simulation framework discussed earlier. However, the specific
realization of Job has to provide methods with the appropriate signatures and names. Artifacts
such as pluggable adaptors (e.g. Smalltalk’s MVC library) or sofiware connectors (see e.g. [Yel-
lin &Strom, 1994]) have been proposed as a way of bridging nomenclature and other kinds of
mismatches. They may be used to support any composition technology, but are most valuable for
the ones that have to rely on source-level dependencies.

Notwithstanding the algorithmic difficulties inherent in signature matching, we are finding out,
through simple tests with the OSE library, that signature matching is weak in general when deal-
ing with utility-like classes, as opposed to domain-specific ones, and even more so for a loosely
typed language like C++ where the basic types ‘int’, ‘char’, and ‘void *’ (generic pointer) are
heavily overloaded for genericity purposes (see e.g. [Mili, Marcotte & Kabbaj,1994]). The exam-
ple of Figure 5 shows several functions with no input parameters and no return types, or a boolean
return typel. Obviously, some behavioral descriptions of some sort must be incorporated in the
matching to strengthen it. The simplest (and least analytical) way uses method names as well as
their type signatures, for the purposes of matching, based on the assumptions that names reflect
semantics, with known disadvantages (see e.g. [Mili et al., 1995]). For the time being, we are
developing an algorithm that uses names to rank rather than filter the candidates that match based
on types alone. The name matching relies on some lexical processing to increase the possibility of
matching (e.g. reducing method names to word stems, see e.g. [Mili et al.,1997]).

1. OTCBoolean, which is essentially an int.

Page 25

A second alternative uses the signatures of the methods called within the methods of a particular
class, as an additional matching criterion. For instance, a framework’s message flow graphs pro-
vide that information for the participant interfaces: the set of messages immediately (as opposed
to transitively) triggered by a method of the participant. As for the class components that are
present in the library, the parser that we developed extracts call graphs, and the information is
readily available [Mili et al., 1997]. Implementing this alternative is a bit more involved, in part
because of the circular dependencies, and has not be evaluated yet. Because the above two alter-
natives rely on the basic type-based signature matching, we will be offering developers with all
three variants (vanilla flavor type-based signature matching, type-based with names, and type-
based with signature matching of called methods), with the last two helping to filter out spurious
matches or breaking ties. Later versions may accommodate some variations in the signatures such
as optional parameters, type conformance instead of type identity, etc. (see e.g. [Zaremski &
Wing, 1993], [Yellin & Strom,1994]); only experimentation will tell if the heavier machinery is
worth the trouble.

5. Framework packaging

One of the goals of our representation model was «scalability», or «embeddability», whereby we
try to package frameworks in such a way that they can be participants of other frameworks. In this
section, we are concerned with the packaging of the source code itself of a framework realization
into a single unit. We first look at the motivations behind the packaging, and then the problems it
raises and the way we addressed them in the context of our current implementation. It should
come as no surprise that we will package framework realizations as classes, and we will discuss
the advantages of such a packaging by referring directly to class properties.

Packaging framework realizations as classes is a good way of physically packaging framework-
related source code. For instance, a framework may involve the creation and management of data
entities other (framework variables) than the participants themselves, which need to «live» and be
accessible during the «operation» or «lifetime» of the framework. We need a construct to group
these variables, and a class offers the right combination of visibility scoping and lifetime scoping.
Further, such classes may be used to encapsulate framework-specific processing such as message
sequences and instantiation scenarios.

Packaging frameworks as classes is also good for reuse purposes, as it abstracts away the imple-
mentation details of the framework, making it easier to program with the framework, and shield-
ing the resulting programs from any changes in the underlying structure of the framework.
Consider the case of the event-based simulation framework shown in Figure 3. Once an instance
of the framework is realized, the developer need not be aware of the existence of a dispatcher, of a
queue, or the creation of jobs to deliver events, and the assignment of those jobs to agents, as the
list of tasks and the corresponding parameters shows (see Figure 3). By programming directly into
the framework’s interface, we shield our programs from iterative refinements of the framework

Page 26

which may lead to redistributions of functionalities among the participants, splitting the function-
ality of a participant into two new participants, offering a wider range of behaviors, etc.

Naturally, one might argue that by wrappering all the functionality into a monolithic class, we are
defeating the benefits of building an event based system as a collaboration of several classes,
which are, 1) the independent reuse of those classes, and 2) the flexibility obtained by breaking
down the functionality, providing a wider range of behaviors. We are not defeating those benefits
because we envision framework packaging as a delivery mechanism and not as a construction
mechanism: we still develop and maintain (and reuse) participants separately, and combine them
at will for framework realization. However, if we were to do any maintenance on the framework’s
code, it has to be done at the level of the individual participants, and the framework realization’s
class wrapper has to be regenerated.

Finally, by packaging frameworks as classes we isolate the inter-object behavioral composition
mechanism, with benefits for both the framework builders and its users. For example, if the mes-
sage triggering inherent in message sequences/flow graphs is implemented by direct function call,
we can code tasks to consist of a call to the first message on the sequence. For example, the task
‘schedule’ for the simulation system which is defined as follows:

voi d schedule (IN Job j)

0> d- >schedul eJob(j)
1> g->add(j)

where d stands for the dispatcher and q for the queue, says that the invocation of the message
‘scheduleJob()’ on the dispatcher «triggers» the invocation of the message ‘add’ on the queue.

Translated into C++ and using function calls, this becomes':

void OTCSi nmul ati onSystem : schedul e (Job j)

{
d- >schedul eJob(j);

If the dispatcher (d) didn’t know explicitly about the queue, and had some processing to do, inde-
pendently of the actual queueing of the job, the generated code could be:

void OTCSi nmul ati onSystem : schedul e (Job j)

{
d- >schedul eJob(j);

q- >add(]) ;

This would be the case, for example, if we used a notification-based mechanism for coordinating
participants. If we knew that, 1) the dispatcher had to notify its dependents in case new jobs are
passed on to it, ii) that the queue was one of those dependents, and iii) that the queue had to add
new jobs to itself upon hearing about them, then the above generated code would accomplish that,
and would do so efficiently.

1. or we should say, «reverts back toy, since the message sequences/flow graphs are abstractions of C++
calls.

Page 27

Note that Smalltalk supports a notification-based mechanism for object coordination (called
dependency mechanism), and the environment maintains a list of dependents for each object, that
are notified «anonymously» when the objects wishes to inform the «world» about changes it
underwent. While this mechanism is very flexible, it can be fairly inefficient because all the
dependents of a particular object are notified whether the changes taking place in that object con-
cern them or not. Basically, what we are able to accomplish by generating code for message
sequences/flow graphs is provide efficient implementations for flexible behavioral compositions
mechanisms: we could still develop the framework participants (construction time) based on a
notification-based communication model, thus removing any code-level dependencies (cross ref-
erences) between them. When we use them (realization and packaging time), however, we use an
efficient substitute for notification-based coordination! This is perhaps the most important advan-
tage of framework realization packaging.

We have developed a first version of a C++ framework packager which maps «abstract» frame-
work descriptions and specific participant realizations into actual C++ code. Figure 6-a shows
excerpts of the generated class definition for the framework simulation system. We first summa-
rize the most important transformations from framework description to source code, and then
comment on specific constructs. Roughly speaking, the generation rules for the class declaration
are as follows:

. Framework — class, where <class name> = “FP’’ .<framework name>
. Framework participants — data members, where
. <member name> = <participant name> and <member type>, and
. <member type> = pointer to the class matching <participant interface>

When the participant is a collection of objects (e.g. j*, where * is the Kleene star), the
member type is a container class capable of holding the type of the participant.

. Tasks — function members where:
. <function name> = <task name>, and
. <function signature> = <task signature> where we substitute interfaces by realiza-
tion classes, OUT (parameter passing mode) by reference passing (&)
. Instantiation scenarios — constructors, where
. <constructor signature> = <instantiation scenario signature> where we substitute

interfaces by realization classes

In case we have several instantiation scenarios with the same signature (the case of the
example of Figure 6), we define a parameterless constructor, but several initialization
functions with automatically generated names.

Note that the container class used for «multi-valued» participants depends on the contents of the

library. Our packager has options for defining default container classes-- in this case the template
class OTC_Collection<T>. Other language-specific default options should be specified, such as
the default mapping of built-in types/interfacesl, ways of handling OUT parameters (as ‘&’ ver-
sus as pointers), etc.

1. We use the «abstract» type ‘Integer’ in framework descriptions. It can be mapped to a C++ int, long,
unsigned, etc.

Page 28

cl ass FPOTC_Si nul ati onSystem {
public:

/[l constructors
FPOTC _Si ul at i onSysten() ;

// initialization nethods

virtual void initialize _scenariol();
virtual void initialize_scenario2();

/] access net hods

OTC Di spatcher* get Di spat cher();
OTC_JobQueue* get Queue();

/] tasks

virtual int runSinulation();
virtual void schedul e(OTC Job* thedob);

private:
/|l data menbers
OTC _Di spat cher* di spat cher;
OTC _JobQueue* queue;
OTC Col | ecti on<OTC _Job>* j obs;
}

Figure 6-a. Excerpts from the framework package class declaration.

The actual code generation involves additional rules, which may be divided into general rules,
policy rules, and language-specific rules. General rules include the substitution of interface names
by actual class names, and of message names by the corresponding realization class method
names. Policy rules have to do with things such as the underlying message sequencing mecha-
nism, e.g. deciding whether each message invokes the immediately subsequent one(s), as is done
here, versus using a notification-based mechanism. Language specific rules are self-explanatory,
and deal with message sending syntax, iteration constructs, and the like.

FPOTC_Si mul ati onSystem : FPOTC_Si nul ati onSystem()
:j obs(new OTC _Col | ecti on<OTC_Job>)
{}

voi d FPOTC _Si nul ati onSystem :initialize_scenario2()

di spat cher = new OTC_Di spat cher;
queue = new OTC JobQueue;
di spatcher->Initialise(queue);

Page 29

int FPOTC_Si mul ati onSystem : runSi nul ati on()
{

}
voi d FPOTC _Si mul ati onSystem : schedul e(OTrC _Job* theJob)

return dispatcher->run();

di spat cher - >schedul e(t heJob) ;

Figure 6-b. Some method definitions for the framework package class.

The source code generated for the framework tasks and instantiation scenarios is inevitably
incomplete because our notation for message flow graphs does not include all of the control infor-
mation (alternation, loops), and should not be cluttered with low-level operations. Users of a
framework package should derive from the generated class, and redefine locally the methods
whose generated code is incomplete, which explains why the function methods that correspond to
tasks and instantiation scenarios are all declared virtual (Figure 6-a).

At the time of this writing, we have just completed our first version of the framework packager,
and we don’t have yet practical experience to evaluate the usefulness of the generated method
bodies. The important issue, from a maintenance and a reuse point of view, is to figure out
whether the manually written code in developers’ derived classes is invalidated by a regeneration
of the base class. Some of the work we are currently pursuing deals with identifying the simple
cases of changes in the framework structure that would have no effect on the derived code, and/or,
localizing, as narrowly as possible, the scope of those effects.

6. Related work

There has been a lot of interest recently in object frameworks of various forms, including some of
the work mentioned in section 2. Work on the specification, development, and use of object
frameworks can benefit from the following areas:

Representation of behavioral compositions: Interest in describing functional or behavioral com-
positions predates the object-oriented paradigm, and some of that work has carried over to the
object-oriented domain. There is a wide-spectrum of composition paradigms, depending on the
level of abstraction of the language and its granularity. There is a range of module interconnection
languages [Hall & Weedon, 1993] from the fairly formal LIL (see e.g. [Goguen,1986]) and other
descendants of OBJ, which focused on algebraic specification of parameterized data types, to the
more practical languages or language extensions which are concerned mostly with verifying that a
set of collaborating modules satisfy each other’s expectations in terms of supported interfaces (see
e.g. ANNA [Tracz,1993], contracts [Helm et al., 1990]). Researchers have shown that this
requirement is not only needlessly strict (e.g. [Yellin et al., 1994]), but also insufficient, as a lot of
the assumptions about the behavior of peer modules are not explicited in their interfaces (see e.g.

Page 30

[Garlan et al., 1995]). On the more abstract level, we have a range of logic-based composition
techniques embodied in constraint and logic programming languages (see e.g. [Saraswat,1990],
[Wilk,1991]). These languages have the advantage of supporting composition while obviating the
need for cross-referencing (so called lexical binding) between components. However, they are too
far removed from procedural (practical) languages and are of limited use in practice. Work on
reactive and discrete-event systems benefits from a long tradition and a number of formal results
on both the validation and verification aspects of compositions [Mili et al., 1995], but is too cum-
bersome for more traditional applications. Our own approach to constraints combines the declara-
tive and (composability) aspects of declarative-style compositions, with an imperative object-
oriented programming style (see [Mili et al., 1990], [Mili, 1997]).

Search and realization issues: Software reuse research has traditionally focused on packaging
and search issues for reusable components [Mili et al., 1995]. The sharing of reusable component
libraries over the internet' will bring search issues back to the forefront as developers now have
the option of choosing between components from numerous, heavily overlapping, component
libraries. Within the context of the two-phase search (see section 2.5), we see two kinds of issues,
1) issues of closure as we have to match individual behavioral specifications to compositions of
such specifications, 2) the issue of finding potential participants for a given framework. The first
problem is a notoriously difficult one (see e.g. [Lam & Shankar,1992]), and we may have to settle
for the verification of necessary but insufficient conditions, or use heuristic techniques which rely
on structured documentation. The second set of issues is an instance of the more general problem
of matching class specifications to class implementations, which has been studied under various
forms both theoretically (see e.g. [Guttag et al., 1985], [Goguen,1986], [Chen et al., 1993], [Mili
et al., 1994a]) and practically (see e.g. [Zaremski & Wing, 1993]). At issue are both the decidabil-
ity of interface matching itself, as well as the usefulness of matches. Typically, the more informa-
tion used in the matching process, the more significant the matching. However, the additional
information often comes at a great expense, or relies on unrealistic assumptions. We have been
careful to limit our investigation to constructs that are readily available in existing frameworks
code, or to ones that can be easily extracted.

Packaging issues: the problem of packaging a set of interacting objects/modules into a module
arises quite often in OO work, be it at the modeling/analysis level (e.g. [Mili, 1990], [Lieberherr
et al., 1991], [De Champeaux et al.,1993]), or at the code level with things such module intercon-
nection languages ([Hall & Weedon, 1993]). Some of the issues include deciding on what to
expose to the outside world, and what to hide, as well as providing the same kind of flexibility
through the encapsulation interface. Interestingly, much of the work on packaging frameworks
seems to come from the practical arena with the revival of code generators in general, and user
interface generators in particular. While much of the work on user interface frameworks during
the 80’s focussed on better delineation of user interface functionalities and separate packaging of
those functionalities (e.g. the MVC framework [Reenskaug,1995], Interviews [Linton et al.,
1989]), the newer generation of development tools and environments (see e.g. ParcPlace/
Digitalk’s VisualWorks and Parts product lines, IBM’s VisualAge/Smalltalk environment) focus
on providing developers with the means to specify the «external» behavior and appearance of

1. The library from which the two example frameworks was retrieved via a rudimentary web keyword
search.

Page 31

interfaces, but relieve them from the implementation details of the frameworks by generating
automatically the glue code that ties the MVC pieces together!. In essence, this trend is moving
frameworks from a paradigm for the user of reusable components, to a paradigm for the developer
of such components. Issues of maitainability of frameworks and the inter-operability of frame-
works that share participants need to be addressed, and we have barely scratched the surface.

7. Discussion

In this paper, we described ongoing research at the University of Quebec to develop a representa-
tion for object frameworks that supports a number of often conflicting goals, not the least of
which is our desire for solid theoretical underpinnings and immediate applicability. Our theoreti-
cal work progress hand in hand with prototyping efforts which aim at making our ideas workable.
Our research strategy has been to cover the entire lifecycle of development with frameworks--
albeit not at great depth-- with the purposes of identifying the major issues that need to be
addressed so that we can provide effective and robust support for programming with object frame-
works.

From a theoretical standpoint, there are a number of outstanding issues. First, we are exploring the
range of useful relationships that may exist between object frameworks and that support extensi-
bility and scalability. We have seen in section 3.1.4 two examples of such relationships. Along
with exploring the various kinds of relationships, we will explore design or style guidelines that
would make such frameworks more “separable”. Second, there remain a number of outstanding
issues with the packaging of message flow graphs as single messages through interface closure.
For the time being, we have used default «conservative» closure rules. Notwithstanding the fact
that such a closure may carry extraneous parameters, it ignores the inter-play of pre- and post-
conditions between the messages in the flow graph, and may lead to inconsistent or indeterminate
parameter values. Further, our closure algorithm abstracts out some aspects of object synchroniza-
tion, and creates atomic boundaries around essentially non-atomic operations. This means that the
interface closure of a task may not always be a faithful abstraction of what happens within the
task; additional behavioral/dynamic information may need to be included. This problem is not
specific to frameworks; it arises with reusable software of all sorts [Kiczales & Lamping,1992],
[Garlan et al., 1995]. Finally, we are also experimenting with the generation of message sequences
from the specification of structural constraints (see section 3.2). Key to this effort is the construc-
tion of a catalog of such constraints.

From a practical standpoint, we are developing tools for automating the extraction of framework
specifications. Other aspects of our work required that we build a C++ parser that uses static type
analysis to extract static cross-references between methods belonging to various classes. We are
augmenting this parser to extract framework specific message flow graphs by: 1) limiting the call
graphs to those that are initiated by methods that are part of the required interfaces of framework
classes, and 2) by performing some measure of data flow analysis to trace actual framework par-
ticipants (as opposed to their types) through a call graph; tracing a variable through casting and
polymorphic assignment is proving to be quite a challenge. We are also refining the tools already

1. Which makes it even harder to teach good OO design practices with such tools and environments.

Page 32

developed. First on our agenda is the interface matching tool in general, and the framework reali-
zation tool in particular. We are currently working towards a realistic data set so that our methods
and tools can be validated experimentally.

References

[Allen & Garlan, 1994] Robert Allen and David Garlan, “Formalizing architectural connection,’’
Proceedings of ICSE’16, May 16-21, Sorrento - Italy, pp. 71-80.

[Barth,1986] Paul Barth, ““An Object-Oriented Approach to Graphical Interfaces,”” ACM Trans-
actions on Graphics, Vol. 5, No 2, April 1986, pp. 142-172.

[Borning, 1986] Alan Borning and Robert Duisberg, ““Constraint-Based Tools for Building User-
Interfaces,”” ACM Transactions on Graphics, Vol. 5, No. 4, October 1986, pp. 345-374.

[Chen et al., 1993] Patrick S. Chen, Rolh Hennicker, and Matthias Jarke, “On The Retrieval of
Reusable Components,’’ in Advances in Software Reuse, selected Papers from the Second
International Workshop on Software Reusability, Lucca, Italy, March 24-26, 1993, IEEE
Computer Society Press, pp. 99-108.

[Darden & Rada, 1988] Lindley Darden and Roy Rada, “Hypothesis Formation Using Part-Whole
Interrelations,” Analogical Reasoning: Perspectives in Philosophy and Artificial Intelli-
gence, Eds. Helman, Reidel & Dordrecht, Netherlands, 1988.

[De Champeaux, 1993] Dennis De Champeaux, Doug Lea, and Penelope Faure, Object-Oriented
Software Development, Addison-Wesley, 1993. See in particular chapter on Ensembles
(pp- 133-143).

[Deutsch,1989] Larry P. Deutsch, “Design Reuse and Frameworks In The Smalltalk-80 Program-
ming System,’” in Software Reusability, vol 11, Eds Ted J. Biggerstaff and Alan J. Perlis,
ACM Press, 1989.

[Dumpleton,1994] Graham Dumpleton, OSE - C++ Library User Guide, Dumpleton Software
Consulting Pty Ltd, Parramatta, Australia, 1994.

[Freeman-Benson,1989] Bjorn N. Freeman-Benson, ‘“Kaleidoscope: Mixing Objects, Con-
straints, and Imperative Programming,’’ Proceedings of OOPSLA’89, ACM Press, Octo-
ber, 1989, pp. 77-88.

[Garlan et al., 1995] David Garlan, Robert Allen, and John Ockerbloom, ‘“Architectural mis-
match: Why reuse is so hard,”’ IEEE Software, vo. 12, no. 6, November 1995, pp. 17-26

[Gabriel,1994] Richard P. Gabriel, “The Failure of Pattern Languages,”’ Journal of Object Ori-
ented Programming, February 1994, pp. 84-88.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading,
MA., 1995.

[Goguen,1986] Joseph A. Goguen, “Reusing and Interconnecting Reusable Components,’” Com-
puter, February 1986, pp. 16-28.

[Golberg & Robson, 1989] Adele Golberg and David Robson, Smalltalk-80: The Language, Add-
ison-Wesley, Reading, MA., 1989.

[Guttag et al., 1985] John V. Guttag, James J. Horning, and Jeannette Wing, “An overview of the
Larch family of specification languages,”’” IEEE Software, vol. 2, no. 5, September 1985,
pp. 24-36.

[Hall & Weedon, 1993] Pat Hall and Ray Weedon, “Object-Oriented Module Interconnection
Languages,”’ in Advances in Sofiware Reuse, selected Papers from the Second Interna-

Page 33

tional Workshop on Software Reusability, Lucca, Italy, March 24-26, 1993, IEEE Compu-
ter Society Press, pp. 29-38

[Helm et al., 1990] Richard Helm, Ian Holland, and D. Gangopadhyay, ““Contracts: Specifying
Behavioral Compositions in Object-Oriented Systems,’” in Proceedings of OOPSLA 90,
ACM Press, Ottawa, Canada, October 22-25, 1990.

[Johnson & Foote, 1988] Ralph E. Johnson and Brian Foote, “Designing Reusable Classes,”’
Journal of Object-Oriented Programming, August/September 1988.

[Johnson, 1992] Ralph E. Johnson, “Documenting Frameworks using Patterns,’’ Proceedings of
OOPSLA’92, Vancouver, B.C., 18-22 October, 1992, ACM Press, pp. 63-76.

[Johnson, 1994] Ralph Johnson, ‘“Why a Conference on Pattern Languages,’’ Software Engineer-
ing Notes, vol. 19, no. 1, January 1994, pp. 50-52.

[Kiczales & Lamping,1992] Gregor Kiczales and John Lamping, ““Issues in the Design and Doc-
umentation of Class Libraries,”’ Proceedings of OOPSLA’92, October 1992, pp. 435-451.

[Lam & Shankar,1992] Simon S. Lam and Udaya Shankar, “Specifying Modules to Satisfy Inter-
faces: A State Transition Approach,’’ Distributed Computing, vol. 6, 1992, pp. 39-63.

[Linton et al., 1989] Mark Linton, John Vlissides, and Paul Calder, ‘“Composing User Interfaces
with Interviews,”” IEEE Computer, Feb. 1989, pp. 8-22.

[Mili et al., 1990] Hafedh Mili, Johsn Sibert, and Yoav Intrator, “An Object-Oriented Model
Based on Relations,’” Journal of Systems and Software, vol. 12, May 1990, pp. 139-155.

[Mili et al., 1994a] Ali Mili, Rym Mili, and Roland Mittermeir, *“Storing and Retrieving Software
Components: A Refinement-Based Approach,”’ Proceedings of the Sixteenth Interna-
tional Conference on Software Engineering, Sorrento, Italy, May 1994.

[Mili et al., 1994b] Hafedh Mili, Odile Marcotte, and Anas Kabbaj, “Intelligent Component
Retrieval for Software Reuse,’’ Proceedings of the Third Maghrebian Conference on Al
and SE, April 1994, Rabat - Morocco, pp. 101-114.

[Mili et al., 1995] Hafedh Mili, Fatma Mili, and Ali Mili, “Reusing Software: Issues and
Research Directions,”” IEEE Transactions on Software Engineering, June 1995, vol. 21,
no. 6, pp. 528-562.

[Mili, 1996] Hafedh Mili, ““On Behavioral Descriptions in Object-Oriented Programming,’” Jour-
nal of Systems and Sofiware, August 1996.

[Mili et al., 1997] Hafedh Mili, Estelle Ah-Ki, Robert Godin, and Hamid Mcheick, ““Another nail
to the coffin of multi-faceted component classification and retrieval,”” Proceedings of
1997 Symposium on Software Reuse (SSR’97), May 1997, Boston Mass.

[Reenskaug, 1995] Trygve Reenskaug, Working with Objects, Prentice-Hall, 1995

[Saraswat,1989] Vijay A. Saraswat, Concurrent Constraint Programming Languages, Ph.D. the-
sis, Carnegie Mellon University, January 1989.

[Tracz,1993] Will Tracz, “LILEANNA: A Parameterized Programming Language,’’ in Advances
in Software Reuse, selected Papers from the Second International Workshop on Software
Reusability, Lucca, Italy, March 24-26, 1993, IEEE Computer Society Press, pp. 66-78.

[Wegner,1992]Peter Wegner, “Dimensions of Object-Oriented Modeling,”” COMPUTER (special
issue of on Object-Oriented Computing) IEEE CS Press, vol. 25, No 10, October 1992,
pp- 12-20.

[Wilk, 1991] Michael Wilk, “Equate: An Object-Oriented Constraint Solver,”” in Proceedings of
OOPSLA’91, Phoenix, AZ., October 6-11, 1991, ACM Press, pp. 286-298.

[Yellin,1994] Daniel Yellin, Robert Strom, “Interfaces, Protocols, and the Semi-Automatic Con-
struction of Software Adaptors,”” Proceedings of OOPSLA’94, Portland, Oregon, October

Page 34

1994, ACM Press, pp: 176-190.

[Zaremski & Wing, 1993] Amy M. Zaremski and Jeannette M. Wing, “Signature Matching: A
Key to Reuse,’” Software Engineering Notes, vol. 18, no. 5 (proceedings of the first ACM
SIGSOFT Symposium on the Foundations of Software Engineering), pp. 182-190.

	Heading - 4. Framework search and realization
	Heading 2 - 4.1 Formulating and matching interface queries
	Heading 2 - 4.2 Framework realization
	Heading 2 - 4.3 Discussion

	Heading - 7. Discussion

